SkFlow
Introduction
Import library
import tensorflow.contrib.learn as skflow
from sklearn import datasets, metrics
from sklearn import cross_validationLoad dataset
iris = datasets.load_iris()
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
iris.data, iris.target, test_size=0.2, random_state=42)
# Feature columns is required for new versions
feature_columns = skflow.infer_real_valued_columns_from_input(x_train)Linear classifier
classifier = skflow.LinearClassifier(feature_columns=feature_columns, n_classes=3,model_dir='/tmp/tf/linear/')
classifier.fit(x_train, y_train, steps=200, batch_size=32)
score = metrics.accuracy_score(y_test, classifier.predict(x_test))
print("Accuracy: %f" % score)Multi layer perceptron
Using Tensorboard
Last updated