Introduction
In order to make the use of tensorflow simpler to experiment machine learning, google offered a library that stays on top of tensorflow. Skflow make life easier.
Import library
Copy import tensorflow . contrib . learn as skflow
from sklearn import datasets , metrics
from sklearn import cross_validation
Load dataset
Copy iris = datasets . load_iris ()
x_train , x_test , y_train , y_test = cross_validation . train_test_split (
iris.data, iris.target, test_size = 0.2 , random_state = 42 )
# Feature columns is required for new versions
feature_columns = skflow . infer_real_valued_columns_from_input (x_train)
Linear classifier
Copy classifier = skflow . LinearClassifier (feature_columns = feature_columns, n_classes = 3 ,model_dir = '/tmp/tf/linear/' )
classifier . fit (x_train, y_train, steps = 200 , batch_size = 32 )
score = metrics . accuracy_score (y_test, classifier. predict (x_test))
print ( "Accuracy: %f " % score)
Multi layer perceptron
Copy classifier = skflow . DNNClassifier (feature_columns = feature_columns, hidden_units = [ 10 , 20 , 10 ],
n_classes = 3 ,model_dir = '/tmp/tf/mlp/' )
classifier . fit (x_train, y_train, steps = 200 )
score = metrics . accuracy_score (y_test, classifier. predict (x_test))
print ( "Accuracy: %f " % score)
Using Tensorboard
It's much easier to monitor your model with tensorboard through skflow. Just add the parameter "model_dir" to the classifier constructor.
After running this code, type on your server console:
Copy tensorboard --logdir=/tmp/tf_examples/test/
Copy classifier = skflow . DNNClassifier (feature_columns = feature_columns, hidden_units = [ 10 , 20 , 10 ], n_classes = 3 ,model_dir = '/tmp/tf_examples/test/' )
classifier . fit (x_train, y_train, steps = 200 )
score = metrics . accuracy_score (y_test, classifier. predict (x_test))
print ( "Accuracy: %f " % score)